EQUATION SHEET

Principles of Finance

Exam 3

Capital Budgeting

Evaluation techniques:
Payback $=\left(\begin{array}{c}\text { Number of years just } \\ \text { before full recovery of } \\ \text { original investment }\end{array}\right)+\binom{$ Amount of the initial investment that is }{ unrecovered at the start of therecovery year }
Traditional payback—unadjusted cash flows are used
Discounted payback-discounted cash flows, or present values, are used
$N P V=C_{0}+\frac{\hat{C F}_{1}}{(1+r)^{1}}+L+\frac{\hat{C F}_{n}}{(1+r)^{n}}=\sum_{\mathrm{t}=0}^{\mathrm{n}} \frac{\hat{\mathrm{CF}}_{\mathrm{t}}}{(1+\mathrm{r})^{\mathrm{t}}}$
$\mathrm{CF}_{0}+\frac{\hat{\mathrm{CF}}_{1}}{(1+\mathrm{IRR})^{1}}+\mathrm{L}+\frac{\hat{\mathrm{CF}}_{\mathrm{n}}}{(1+\mathrm{IRR})^{n}}=\sum_{\mathrm{t}=0}^{\mathrm{n}} \frac{\hat{\mathrm{CF}}_{\mathrm{t}}}{(1+\mathrm{IRR})^{\mathrm{t}}}=0$
IRR = internal rate of return

MIRR: PV of cash outflows $=\frac{F V \text { of cash inflows }}{(1+\text { MIRR })^{n}}=\frac{T V}{(1+M I R R)^{n}} ; \quad \sum_{t=0}^{n} \frac{\operatorname{COF}_{t}}{(1+r)^{t}}=\frac{\sum_{t=0}^{n} \operatorname{CIF}_{t}(1+r)^{t}}{(1+M I R R)^{n}}$

Cash Flow Estimation

Net cash flow = Net income + Depreciation = Return on capital + Return of capital
$\begin{gathered}\text { Supplemental } \\ \text { operating cash flow }_{t}\end{gathered}=\Delta$ Cash revenues $_{t}-\Delta$ Cash $_{\text {expenses }}^{t}$ $-\Delta$ Taxes $_{t}$

$$
\begin{aligned}
& =\Delta \mathrm{NOI}_{t} \times(1-\mathrm{T})+\Delta \mathrm{Depr}_{t} \\
& =\left(\Delta \mathrm{NOI}_{t}+\Delta \mathrm{Depr}_{t}\right) \times(1-\mathrm{T})+\mathrm{T}\left(\Delta \mathrm{Depr}_{t}\right)
\end{aligned}
$$

Cost of Capital

$\begin{gathered}\text { After-tax component } \\ \text { cost of debt }\end{gathered}=\binom{$ Bondholders' required }{ rate of return }$-\binom{$ Tax savings }{ associated with debt }$=r_{d}-r_{d} \times T=r_{d}(1-T)$
$\underset{\text { of preferred stock }}{\text { Component cost }}=r_{p s}=\frac{D_{p s}}{P_{0}(1-F)}=\frac{D_{p s}}{N P_{0}}$
$\begin{gathered}\text { Component cost } \\ \text { of retained earnings }\end{gathered}=r_{s}=r_{R F}+\left(r_{M}-r_{R F}\right) \beta_{s}=\frac{\hat{D}_{1}}{P_{0}}+g=\hat{r}_{s}$
$\begin{gathered}\text { Component cost } \\ \text { of new equity }\end{gathered}=r_{e}=\frac{\hat{D}_{1}}{P_{0}(1-F)}+g=\frac{\hat{D}_{1}}{N P}+g$

$$
\begin{aligned}
\text { WACC } & =\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of } \\
\text { debt }
\end{array}\right) \times\left(\begin{array}{c}
\text { After-tax } \\
\text { cost of } \\
\text { debt }
\end{array}\right)\right]+\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of preferred } \\
\text { stock }
\end{array}\right) \times\left(\begin{array}{c}
\text { Cost of } \\
\text { preferred } \\
\text { stock }
\end{array}\right)\right]+\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of common } \\
\text { equity }
\end{array}\right) \times\left(\begin{array}{c}
\text { Cost of } \\
\text { common } \\
\text { equity }
\end{array}\right)\right] \\
& =\mathrm{w}_{\mathrm{dT} \mathrm{r}_{\mathrm{dT}}}+\quad+\quad \mathrm{w}_{\mathrm{ps}} \quad+\quad \mathrm{w}_{\mathrm{s}}\left(r_{\mathrm{s}} \text { or } r_{\mathrm{e}}\right)
\end{aligned}
$$

$\begin{aligned} & \text { WACC } \\ & \text { Break Point }\end{aligned}=\frac{\text { Total dollar amount of lower cost of capital of a given type }}{\text { Proportion of this type of capital in the capital structure }}$

Planning and Control

Full capacity sales $=\frac{\text { Sales level }}{\binom{\text { Percent of capacity used }}{\text { to generate sales level }}}$

Operating Breakeven Analysis

$\underset{\text { revenues }}{\text { Sales }}=\stackrel{\text { Total operating }}{\text { costs }} \quad \underset{\text { variable costs }}{\text { Total }} \quad \stackrel{\text { Total }}{\text { fixed costs }}$

$$
(P \times Q)=T O C=(V \times Q)+F
$$

$\mathrm{Q}_{\mathrm{OpBE}}=\frac{\mathrm{F}}{\mathrm{P}-\mathrm{V}}=\frac{\mathrm{F}}{\text { Contribution margin }}$
$\mathrm{S}_{\mathrm{OPBE}}=\frac{\mathrm{F}}{1-\left(\frac{\mathrm{V}}{\mathrm{P}}\right)}=\frac{\mathrm{F}}{\text { Gross profit margin }}$
$\begin{gathered}\text { Degree of } \\ \text { Derating leverage }\end{gathered}=\mathrm{DOL}=\frac{\text { Percentage change in NOI }}{\text { Percentage change in sales }}=\frac{\left(\frac{\Delta \text { NOI }}{\text { NOI }}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)}=\frac{\left(\frac{\Delta E B I T}{\text { EEIT }}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)}=\frac{\left(\frac{\Delta \text { EBIT }}{\text { EBIT }}\right)}{\left(\frac{\Delta \mathrm{Q}}{\mathrm{Q}}\right)}$
$D O L=\frac{(Q \times P)-(Q \times V)}{(Q \times P)-(Q \times V)-F}=\frac{S-V C}{S-V C-F}=\frac{\text { Gross profit }}{E B I T}$

Financial Breakeven Analysis

EPS $=\frac{\text { Earnings available to common stockholders }}{\text { Number of common shares outstanding }}=\frac{(E B I T-I)(1-T)-D_{p s}}{\text { Shrs }_{\mathrm{C}}}=0$
$E B I T_{\text {FinBE }}=1+\frac{D_{\text {ps }}}{(1-T)}$
$\begin{gathered}\text { Degree of } \\ \text { financial leverage }\end{gathered}=$ DFL $=\frac{\text { Percent change in EPS }}{\text { Percent change in EBIT }}=\frac{\left(\frac{\Delta E P S}{\text { EPS }}\right)}{\left(\frac{\Delta \text { EBIT }}{\text { EBIT }}\right)}$

DFL $=\frac{\text { EBIT }}{\text { EBIT }-1}=\frac{\text { EBIT }}{\text { EBIT }-[\text { Financial BEP }]}$
Financial BEP $=1+\frac{\text { Dps }}{(1-T)}$

$$
\begin{aligned}
& \mathrm{DFL}=\frac{\mathrm{EBIT}}{\mathrm{EBIT}-1} \quad \text { When there is no preferred stock. } \\
& \begin{array}{c}
\text { Degree of } \\
\text { total leverage }
\end{array}=D T L=\frac{\left(\frac{\Delta \text { EPS }}{\text { EPS }}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)}=\frac{\left(\frac{\Delta \text { EBIT }}{\text { EBIT }}\right)}{\left(\frac{\Delta \text { Sales }}{\text { Sales }}\right)} \times \frac{\left(\frac{\Delta \text { EPS }}{\text { EPS }}\right)}{\left(\frac{\Delta \text { EBIT }}{\text { EBIT }}\right)}=\text { DOL } \times \text { DFL } \\
& \text { DTL }=\frac{\text { Gross Profit }}{\text { EBIT }} \times \frac{\text { EBIT }}{\text { EBIT }-[\text { Financial BEP }]}=\frac{\text { Gross Profit }}{\text { EBIT }-[\text { Financial BEP }]} \\
& =\frac{S-V C}{E B I T-1}=\frac{Q(P-V)}{[Q(P-V)-F]-I} \quad \text { When there is no preferred stock. }
\end{aligned}
$$

