EQUATION SHEET
 Principles of Finance Final Exam

Financial Statement Analysis

Net cash flow = Net income + Depreciation and amortization
DuPont equation: ROA $=$ Net profit margin \times Total assets turnover

$$
=\frac{\text { Net income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Total assets }}
$$

DuPont equation: ROE \begin{tabular}{rl}
ROA \& $=\frac{\text { Net income }}{\text { Total assets }} \times$ Equity multiplier

\& $=\frac{\text { Total assets }}{\text { Common equity }}$

\& \(=\left[$$
\begin{array}{c}\text { Profit } \\
\text { margin }\end{array}
$$ \times \begin{array}{c}Total assets

turnover\end{array}\right] \times\)| Equity |
| :---: |
| multiplier |

\& $=\left[\frac{\text { Net income }}{\text { Sales }} \times \frac{\text { Sales }}{\text { Total assets }}\right] \times \frac{\text { Total assets }}{\text { Common equity }}$
\end{tabular}

The Financial Environment

Net proceeds from issue = Amount of issue - Flotation costs $=($ Amount of issue $) \times(1-$ Flotation costs $)$

Amount of issue $=\frac{\text { Amount needed }}{(1-\text { Flotation costs })}=\frac{(\text { Net proceeds })+(\text { Other costs })}{(1-\text { Flotation costs })}$

Time Value of Money

Lump-sum (single) payments:

$$
F V_{n}=P V(1+r)^{n}
$$

$$
P V=\frac{F V_{n}}{(1+r)^{n}}=F V_{n}\left[\frac{1}{(1+r)^{n}}\right]
$$

Annuity payments:

$F_{V A}=\operatorname{PMT}\left[\sum_{t=0}^{n-1}(1+r)^{t}\right]=P M T\left[\frac{(1+r)^{n}-1}{r}\right]$
$\operatorname{FVA}(D U E)_{n}=\operatorname{PMT}\left\{\left[\sum_{t=0}^{n-1}(1+r)^{t}\right] \times(1+r)\right\}=\operatorname{PMT}\left[\left\{\frac{(1+r)^{n}-1}{r}\right\} \times(1+r)\right]$
$\mathrm{PVA}_{n}=\mathrm{PMT}\left[\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{1}{(1+r)^{\mathrm{t}}}\right]=\mathrm{PMT}\left[\frac{1-\frac{1}{(1+r)^{n}}}{r}\right]$
$\operatorname{PVA}(D U E)_{n}=\operatorname{PMT}\left\{\sum_{\mathrm{t}=1}^{\mathrm{n}}\left[\frac{1}{(1+\mathrm{r})^{\mathrm{t}}}\right] \times(1+\mathrm{r})\right\}=\operatorname{PMT}\left[\left\{\frac{1-\frac{1}{(1+r)^{n}}}{\mathrm{r}}\right\} \times(1+\mathrm{r})\right]$
Perpetuities:
Present value of a perpetuity $=P V P=\frac{\text { Payment }}{\text { Interest rate }}=\frac{P M T}{r}$

Uneven cash flow streams:

$\mathrm{FVCF}_{\mathrm{n}}=\mathrm{CF}_{1}(1+\mathrm{r})^{\mathrm{n}-1}+\ldots+\mathrm{CF}_{\mathrm{n}}(1+\mathrm{r})^{0}=\sum_{\mathrm{r}=0}^{\mathrm{n}-1} \mathrm{CF}_{\mathrm{t}}(1+\mathrm{r})^{\mathrm{t}}$
$\mathrm{PVCF}_{\mathrm{n}}=\mathrm{CF}_{1}\left[\frac{1}{(1+r)^{1}}\right]+\ldots+\mathrm{CF}_{n}\left[\frac{1}{(1+r)^{n}}\right]=\sum_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{CF}\left[\frac{1}{(1+r)^{t}}\right]$

Interest rates (yields):

Periodic rate $=r_{\text {PER }}=\frac{\text { Stated annual interest rate }}{\text { Number of interest payments per year }}=\frac{r_{\text {SIMPLE }}}{\mathrm{m}}$
$\begin{gathered}\text { Number of } \\ \text { int erest periods }\end{gathered}=n_{\text {PER }}=\binom{$ Number }{ of years }$\times\binom{$ Number of interest }{ payments per year }$=n_{\text {YRS }} \times m$
$\begin{gathered}\text { Effective } \\ \text { annual rate }\end{gathered}=E A R=r_{\text {EAR }}=\left(1+\frac{r_{\text {SIMPLE }}}{m}\right)^{m}-1.0=\left(1+r_{\text {PER }}\right)^{m}-1.0$

Annual percentage rate $=A P R=r_{\text {PER }} \times m$

Cost of Money

$$
\begin{aligned}
& \begin{aligned}
\text { Dollar return } & =(\text { Dollar income })+\quad(\text { Capital gains }) \\
& =(\text { Dollar income })+(\text { Ending value }- \text { Beginning value })
\end{aligned} \\
& \begin{aligned}
\text { Yield } & =\frac{\text { Dollar return }}{\text { Beginning value }}=\frac{\text { Dollar income }+ \text { Capital gains }}{\text { Beginning value }} \\
& =\frac{\text { Dollar income }+(\text { Ending value }- \text { Beginning value })}{\text { Beginning value }}
\end{aligned}
\end{aligned}
$$

Rate of return $=r=$ Risk-free rate + Risk premium $=r=r_{\text {RF }}+$ RP

$$
\begin{aligned}
\text { Rate of return }=r=r_{R F}+R P & =r_{R F}+[D R P+L P+M R P] \\
& =\left[r^{*}+I P\right]+[D R P+L P+M R P]
\end{aligned}
$$

$r_{\text {Treasury }}=r_{R F}+M R P=\left[r^{*}+I P\right]+M R P$
$\begin{gathered}\text { Yield on an } \\ n \text {-year bond }\end{gathered}=\frac{\binom{\text { Interest rate }}{\text { in Year 1 }}+\binom{\text { (nterest rate }}{\text { in Year 2 }}+\cdots+\binom{\text { nterest rate }}{\text { in Year n }}}{n}=\frac{R_{1}+R_{2}+\cdots+R_{n}}{n}$

Valuation Concepts

General valuation model:

$\begin{aligned} & \text { Value of } \\ & \text { an asset }\end{aligned}=\mathrm{V}_{0}=\mathrm{PV}$ of $\mathrm{CF}=\frac{\hat{\mathrm{CF}}_{1}}{(1+\mathrm{r})^{1}}+\cdots+\frac{\hat{\mathrm{CF}}_{n}}{(1+r)^{n}}=\sum_{\mathrm{t}=1}^{\mathrm{n}} \frac{\hat{\mathrm{CF}}_{\mathrm{t}}}{(1+\mathrm{r})^{\mathrm{t}}}$

Bond Valuation:

$\underset{\text { Value }}{\text { Bond }}=V_{d}=\frac{\text { INT }}{\left(1+r_{d}\right)^{1}}+\ldots+\frac{I N T+M}{\left(1+r_{d}\right)^{N}}=\operatorname{INT}\left[\frac{1-\frac{1}{\left(1+r_{d}\right)^{N}}}{r_{d}}\right]+M\left[\frac{1}{\left(1+r_{d}\right)^{N}}\right]$
Adjust r_{d}, N, and INT if interest is paid more than once per year.

YTM = Yield to maturity
$V_{d}=\frac{I N T}{(1+Y T M)^{1}}+\ldots+\frac{I N T}{(1+Y T M)^{N}}+\frac{M}{(1+Y T M)^{N}}$
$V_{d}=\frac{I N T}{(1+Y T C)^{1}}+\ldots+\frac{I N T}{(1+Y T C)^{N}}+\frac{M}{(1+Y T C)^{N}}$
$r_{d}=Y T M=$ Bond yield $=\underset{\text { yield }}{\text { Current }}+\underset{\text { yield }}{\text { Capital gains }}=\frac{I N T}{V_{d 0}}+\frac{V_{d 1}-V_{d 0}}{V_{d 0}}$

Stock Valuation:

$\begin{aligned} & \text { Stock } \\ & \text { value }\end{aligned}=\mathrm{V}_{\mathrm{s}}=\hat{P}_{0}=\frac{\hat{\mathrm{D}}_{1}}{\left(1+\mathrm{r}_{\mathrm{s}}\right)^{1}}+\cdots+\frac{\hat{\mathrm{D}}_{\infty}}{\left(1+\mathrm{r}_{\mathrm{s}}\right)^{\infty}}=\sum_{\mathrm{t}=1}^{\infty} \frac{\hat{\mathrm{D}}_{\mathrm{t}}}{\left(1+\mathrm{r}_{\mathrm{s}}\right)^{\mathrm{t}}}$

Constant growth stock: $P_{0}=\frac{D_{0}(1+g)}{r_{s}-g}=\frac{\hat{D}_{1}}{r_{s}-g}$

Nonconstant growth stock: $P_{0}=\frac{\hat{D}_{1}}{\left(1+r_{s}\right)^{1}}+\frac{\hat{D}_{2}}{\left(1+r_{s}\right)^{2}}+\cdots+\frac{\hat{D}_{n}+\hat{P}_{n}}{\left(1+r_{s}\right)^{n}}$; where $\hat{P}_{n}=\frac{\hat{D}_{n}\left(1+g_{\text {norm }}\right)}{r_{s}-g_{\text {norm }}}$
gnorm $=$ normal, or constant growth
$\hat{r}_{\mathrm{s}}=$ Stock yield $=\binom{$ Dividend }{ yield }$+\binom{$ Capital gains }{ yield }$=\frac{\hat{\mathrm{D}}_{1}}{\mathrm{P}_{0}}+\mathrm{g}=\left(\frac{\hat{\mathrm{D}}_{1}}{\mathrm{P}_{0}}\right)+\left(\frac{\hat{\mathrm{P}}_{1}-\mathrm{P}_{0}}{\mathrm{P}_{0}}\right)$
$\underset{\text { value added }}{\text { Ecomic }}=\mathrm{EVA}=\mathrm{EBIT}(1-\mathrm{T})-\left[\binom{\right.$ Average cost }{ of funds }$\times\binom{$ Invested }{ capital }$]$

Risk and Rates of Return

$\begin{aligned} & \text { Expected rate } \\ & \text { of return }\end{aligned}=\hat{r}=P r_{1} r_{1}+P r_{2} r_{2}+\ldots+P r_{n} r_{n}=\sum_{i=1}^{n} P r_{i} r_{i}$

Variance $=\sigma^{2}=\sum_{i=1}^{n}\left(r_{i}-\hat{r}\right)^{2} \operatorname{Pr}_{\mathrm{i}}$
Standard deviation $=\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{i=1}^{n}\left(r_{i}-\hat{r}\right)^{2} \operatorname{Pr}_{i}}$
Estimated $\sigma=\mathrm{s}=\sqrt{\frac{\sum_{\mathrm{t}=1}^{\mathrm{n}}\left(\ddot{r}_{\mathrm{t}}-\bar{r}\right)^{2} P r_{t}}{n-1}}$
$\bar{r}=\frac{\ddot{r}_{1}+\ddot{r}_{2}+\cdots+\ddot{r}_{n}}{n}=\frac{\sum_{t=1}^{n} \ddot{r}_{t}}{n}$

Coefficient of variation $=C V=\frac{\text { Risk }}{\text { Return }}=\frac{\sigma}{\hat{r}}$
$\hat{r}_{P}=w_{1} \hat{r}_{1}+w_{2} \hat{r}_{2}+\ldots+w_{N} \hat{r}_{N}=\sum_{j=1}^{N} w_{j} \hat{r}_{j}$
$\beta_{P}=w_{1} \beta_{1}+w_{2} \beta_{2}+\ldots+w_{N} \beta_{N}=\sum_{j=1}^{N} w_{j} \beta_{j}$

Return $=$ Risk-free return + Risk Premium $=r_{\text {RF }}+$ RP

$$
\begin{aligned}
\mathrm{RP} & =\text { Return }-\mathrm{r}_{\mathrm{RF}} \\
\mathrm{RP}_{\text {Investment }} & =\mathrm{RP}_{\mathrm{M}} \times \beta_{\text {Investment }} \\
& \\
\text { rinvestment } & =r_{\mathrm{RF}}+\mathrm{RP}_{\text {Investment }} \\
& =r_{\mathrm{RF}}+\left(\mathrm{RP} \mathrm{P}_{\mathrm{M}}\right) \beta_{\text {Investment }} \\
& =r_{\mathrm{RF}}+\left(\mathrm{rm}_{\mathrm{M}}-\mathrm{rRF}_{\mathrm{RF}}\right) \beta_{\text {Investment }}
\end{aligned}
$$

Capital Budgeting

Evaluation techniques:

Payback $=\left(\begin{array}{c}\text { Number of years just } \\ \text { before full recovery of } \\ \text { original investment }\end{array}\right)+\binom{$ Amount of the initial investment that is }{ unrecovered at the start of therecovery year }
Traditional payback—unadjusted cash flows are used
Discounted payback-discounted cash flows, or present values, are used
$N P V=C F_{0}+\frac{\hat{C F}_{1}}{(1+r)^{1}}+\cdots+\frac{\hat{C F}_{n}}{(1+r)^{n}}=\sum_{t=0}^{n} \frac{\hat{C F}_{t}}{(1+r)^{t}}$
$\mathrm{CF}_{0}+\frac{\hat{\mathrm{CF}}_{1}}{(1+\mathrm{IRR})^{1}}+\cdots+\frac{\hat{\mathrm{CF}}_{\mathrm{n}}}{(1+\mathrm{IRR})^{\mathrm{n}}}=\sum_{\mathrm{t}=0}^{\mathrm{n}} \frac{\hat{\mathrm{CF}}_{\mathrm{t}}}{(1+\mathrm{IRR})^{\mathrm{t}}}=0 \quad \quad$ IRR $=$ internal rate of return

MIRR: PV of cash outflows $=\frac{F V \text { of cash inflows }}{(1+M I R R)^{n}}=\frac{T V}{(1+M I R R)^{n}} ; \quad \sum_{t=0}^{n} \frac{\operatorname{COF}_{t}}{(1+r)^{t}} \frac{\sum_{t=0}^{n} \operatorname{CIF}_{t}(1+r)^{t}}{(1+M I R R)^{n}}$

Cash Flow Estimation

Net cash flow $=$ Net income + Depreciation $=$ Return on capital + Return of capital
Supplemental
$\begin{gathered}\text { Supplemental } \\ \text { operating cash flow } \\ t\end{gathered}=\Delta$ Cash revenues $_{t}-\Delta$ Cash $^{\text {Expenses }}{ }_{t}-\Delta$ Taxes $_{t}$

$$
\begin{aligned}
& =\Delta \text { NOI }_{t} \times(1-\mathrm{T})+\Delta \text { Depr }_{t} \\
& =\left(\Delta \mathrm{NO}_{\mathrm{t}}+\Delta \text { Depr }_{\mathrm{t}}\right) \times(1-\mathrm{T})+\mathrm{T}\left(\Delta \text { Depr }_{\mathrm{t}}\right)
\end{aligned}
$$

Cost of Capital

$\underset{\text { cost of debt }}{\text { After-tax compont }}=\binom{$ Bondholders' required }{ rate of return }$-\binom{$ Tax savings }{ associated with debt }$=r_{d}-r_{d} \times T=r_{d}(1-T)=Y T M(1-T)$
$\underset{\text { of preferred stock }}{\text { Component cost }}=r_{p s}=\frac{D_{p s}}{P_{0}(1-F)}=\frac{D_{p s}}{N P_{0}}$
$\begin{aligned} & \text { Component cost } \\ & \text { of retained earnings }\end{aligned}=r_{S}=r_{R F}+\left(r_{M}-r_{R F}\right) \beta_{S}=\frac{\hat{D}_{1}}{P_{0}}+g=\hat{r}_{S}$
$\begin{gathered}\text { Component cost } \\ \text { of new equity }\end{gathered}=r_{e}=\frac{\hat{D}_{1}}{P_{0}(1-F)}+g=\frac{\hat{D}_{1}}{N P}+g$

$$
\begin{aligned}
\text { WACC } & =\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of } \\
\text { debt }
\end{array}\right) \times\left(\begin{array}{c}
\text { After-tax } \\
\text { cost of } \\
\text { debt }
\end{array}\right)\right]+\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of preferred } \\
\text { stock }
\end{array}\right) \times\left(\begin{array}{c}
\text { Cost of } \\
\text { preferred } \\
\text { stock }
\end{array}\right)\right]+\left[\left(\begin{array}{c}
\text { Proportion } \\
\text { of common } \\
\text { equity }
\end{array}\right) \times\left(\begin{array}{c}
\text { Cost of } \\
\text { common } \\
\text { equity }
\end{array}\right)\right] \\
& =\quad \mathrm{w}_{\mathrm{dT} \mathrm{r}_{\mathrm{dT}}}+\quad+\quad \mathrm{w}_{\mathrm{s}} \mathrm{r}_{\mathrm{ps}}\left(r_{\mathrm{s}} \text { or } r_{\mathrm{e}}\right)
\end{aligned}
$$

$\begin{aligned} & \text { WACC } \\ & \text { Break Point }\end{aligned}=\frac{\text { Total dollar amount of lower cost of capital of a given type }}{\text { Proportion of this type of capital in the capital structure }}$

Managing Short-Term Financing

\(\left.$$
\begin{array}{rl}\text { Cash } \\
\begin{array}{c}\text { Conversion } \\
\text { Cycle }\end{array}
$$ \& =\left(\begin{array}{cc}Inventory \& Receivables

conversion \& collection

period \& period\end{array}\right)\end{array}\right)\)| Pyables |
| :---: |
| - deferral |
| period |

Cost of short-term credit

$\begin{gathered}\text { Percentage cost } \\ \text { per period }\end{gathered}=r_{\text {PER }}=\frac{\binom{\$ \text { cost of }}{\text { borrowing }}}{\binom{\$ \text { amount of }}{\text { usable funds }}}$
$E A R=r_{E A R}=\left(1+r_{\text {PER }}\right)^{m}-1.0$
$A P R=r_{\text {PER }} \times m=r_{\text {SIMPLE }}$

